Agenda

- 14:00 Welcome & Start -Gorry Fairhurst, University of Aberdeen
- 14:05 Status of QUIC
 - Overview of Standards, and operation of QUIC, G Fairhurst (15 mins)
 - \circ Q+A
- 14:25 Overview of QUIC Satellite Performance
 - QUIC Performance (8 mins) Lorena Albiol Schnitger, Indra
 - QUIC SATCOM Operations (8 mins) Chi-Jiun Su, HNS
 - \circ Q+A
- 14:45 Overview QUIC Satellite-Activities
 - ACK Reduction (8 mins) Ana Custura, University of Aberdeen
 - QUIC and Next Gen SATCOM (8 mins) Joerg Deutschmann
 - Accelerating Start-up (8 mins) Nicholas Kuhn, CNES
 - \circ Q+A
- 15:10 Open discussion on challenges and opportunities (20 mins)

QUIC: Its impact on satellite equipment vendors and operators

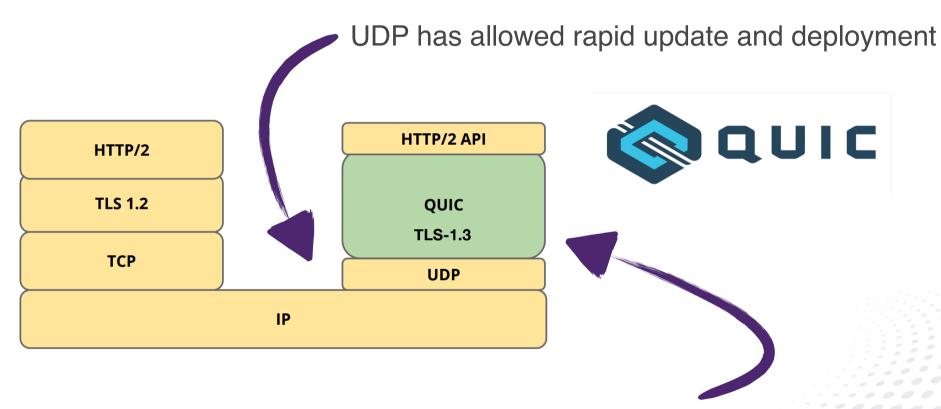
Gorry Fairhurst Aberdeen University

04

What is QUIC?

Explaining the Origins of QUIC

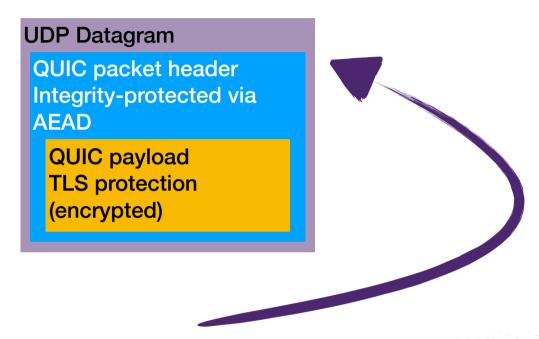
What is QUIC?


	HTTP/1	HTTP/2
Year	(1.1) 1991	2015
Data	ASCII	Binary
Security	TLS optional	TLS 1.2 always
Transport	TCP	TCP
Stream	1 stream over a TCP Connection	Multiple streams over one connection

Evolution of QUIC...

Evolution of Google Chromium Chrome Canary Chrome Stable Desktop Chrome Android Android Search Evolution of Google Google **IETF QUIC** YouTube Android Google+ (In Progress) Google Chartered 2016 June 2013 **April 2014** 2015 2016 >90% bytes from **Chrome** are now QUIC

QUIC replaces TCP with UDP and TLS-1.3

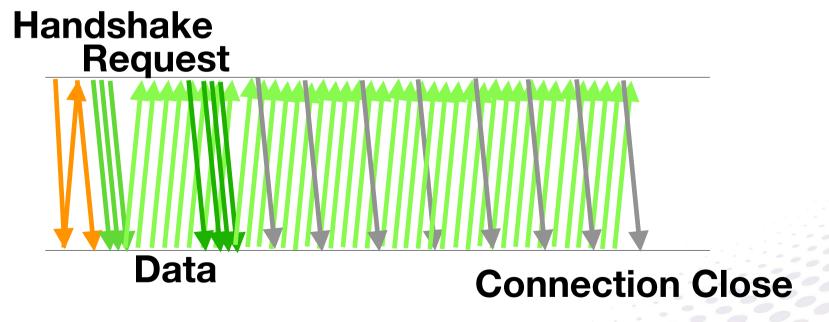


QUIC provides security and privacy protection Encryption prevents unauthenticated middleboxes changing packets

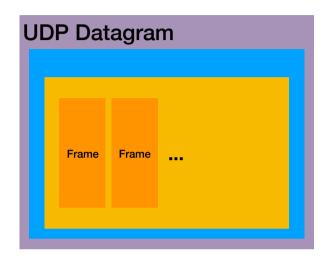
What is QUIC?

	HTTP/1	HTTP/2	HTTP/3
Year	(1.1) 1991	2015	2021
Data	ASCII	Binary	Binary
Security	TLS optional	TLS 1.2 always	TLS 1.3 within IETF QUIC
Transport	TCP	TCP	QUIC over UDP
Stream	1 stream over a TCP Connection	Multiple streams over one connection	Multiple streams over multiple transport streams

QUIC Packets


A QUIC packet is sent in the payload of a UDP Datagram

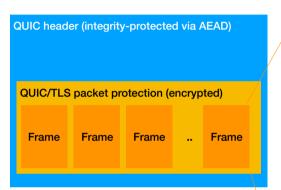
The payload is *always encrypted* using TLS-1.3 Many packets can be *coalesced* into a datagram (there are rules)


QUIC Connections

QUIC uses connections

Each connection starts with a *handshake phase*, similar to TCP A connection can migrate to another network path after it connects

QUIC Packets carry Frames



One or more QUIC Frames are sent in a QUIC Packet

Data is sent in **STREAM Frames**

Packets can also carry other types of **QUIC Frames**

QUIC Frames

Туре	Name	经最高的 化电子
0x00	PADDING	IH01 NP
0x01	PING	IH01 l
0x02	ACK	IH 1 NC
0x03	ACK	IH 1 NC
0x04	RESET_STREAM	01
0x05	STOP_SENDING	01
0x06	CRYPTO	IH 1
0x07	NEW_TOKEN	1
x08 -0x(STREAM	01 F
0x10	MAX_DATA	01
0x11	MAX_STREAM_DATA	01
x12-0x1	MAX_STREAMS	01
0x14	DATA BLOCKED	01
0x15	STREAM_DATA_BLOCKED	01
x16-0x1	STREAMS_BLOCKED	01
0x18	NEW_CONNECTION_ID	01 P
0x18	RETIRE_CONNECTION_ID	01 P
0x1a	PATH_CHALLENGE	01 P
0x1b	PATH_RESPONSE	ih01 l
0x1c-1d	CONNECTION_CLOSE	11

Packets

I: Initial

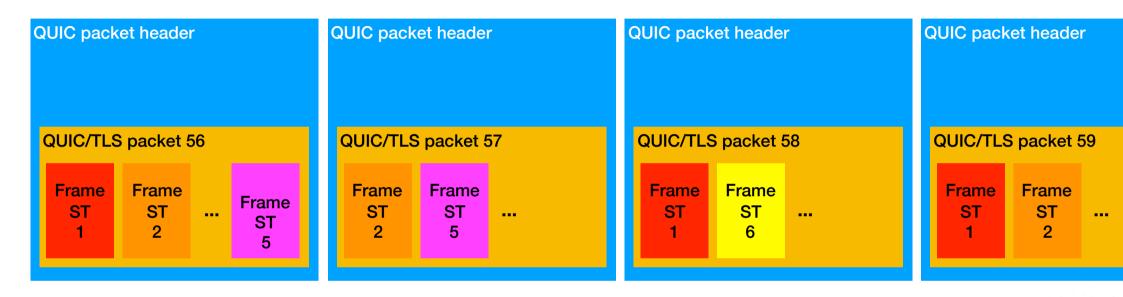
H: Handshake

0: 0-RTT

1: 1-RTT

Types

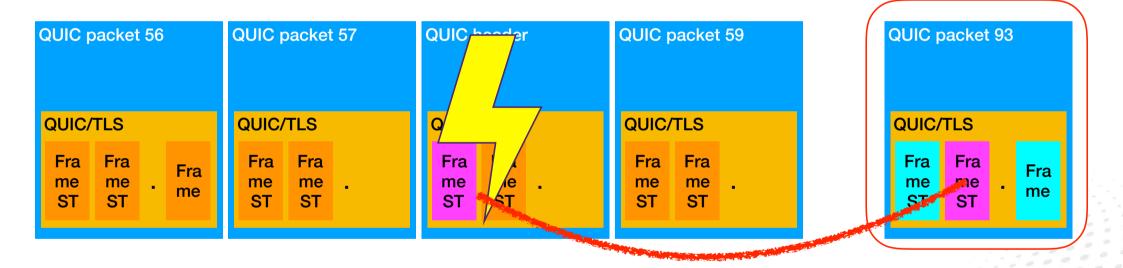
ih: Only in Initial or Handshake


N: not ack-eliciting

C: do not count for CC

P: can probe new paths

F: flow controlled


QUIC: Multi-Streaming

Stream can be created, and deleted as needed - they are never re-used STREAMS are Congestion Controlled (normally)
STREAMS are Flow Controlled

All STREAMS are Acknowledged

Endpoints *all packets* received are *acknowledged*Not all QUIC Streams are *reliable*

Packets are NOT retransmitted (the frames carried in packets CAN be retransmitted)

2020 v1 Spec Nov 2020 IETF Last Call 2021 Publish as RFCs

250+ pages

draft-ietf-quic-applicability

Applicability of the QUIC Transport Protocol

draft-ietf-quic-http

Hypertext Transfer Protocol (HTTP) over QUIC

draft-ietf-quic-invariants

Version-Independent Properties of QUIC

draft-ietf-quic-manageability

Manageability of the QUIC Transport Protocol

draft-ietf-quic-qcram

Header Compression for HTTP over QUIC

draft-ietf-quic-recovery

QUIC Loss Detection and Congestion Control

draft-ietf-quic-tls

Using Transport Layer Security (TLS) to Secure QUIC

draft-ietf-quic-transport

QUIC: A UDP-Based Multiplexed and Secure Transport

https://tools.ietf.org/wg/quic/

QUIC v1 is being deployed

>15 implementations on their way:

e.g.

chrome (**google**) picoquic mvfst (**Facebook**) quant

AppleQUIC (**Apple**) quiche(**Cloudflare**)

ats (**Apache**)

Isquic

mozquic (Mozilla)

ngtcp2 ngx_quic Pandora

f5

quant quiche(**Cloudflare**

quicly (**Fastley**)

quicr & Quinn

Winquic (Microsoft)

quic-go nghq

nghttp3

ls-qpack

nghttp3

https://interop.seemann.io/

What's could be in QUIC 2?

Good things on the way:

Alternative congestion controllers

Partial Reliability - e.g. datagrams for multimedia

Secure Tunnels and Proxies (see new IETF Masque Working Group)...

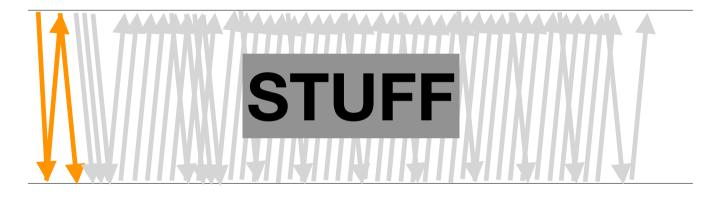
Migration Support (already in Spec)

Multipath support (?To be discussed at IETF-109?)

Forward Error Correction (?Maybe?)

Logging, and other useful stuff

Considerable interest in using QUIC for other applications

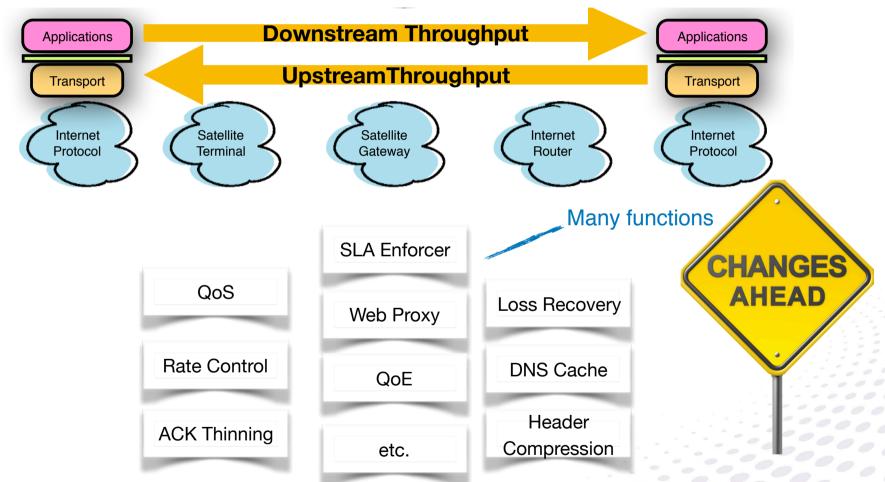

Still all being discussed - no decisions yet.

What do I need to do now that everyone (?) uses QUIC

A Set of Slides Explaining Network Implications

The network can't inspect QUIC traffic

Handshake



The benefits of encryption have side-effects:

Can't debug or measure with common network tools

Need access to keys from the handshake, or server logs

TCP Performance Enhancing Proxies

Middleboxes need explicit authentication!

QUIC changes the way networks are used and how they need to operated

Operators no longer control trade-offs

PEP methods do not work as they have done

Firewalls and Malware detection

Network Management

Compliance and Troubleshooting

Passive Measurement

Legal Intercept

Still can use pattern recognition of traffic (for now, QUIC allows padding)

draft-ietf-tsvwg-transport-encrypt draft-ietf-quic-manageability

QUIC and Broadband Satellite

\odot	QUIC has latest transport improvements - can be easy updated
	QUIC has latest http improvements in H3 - can be easy updated
	Current QUIC optimised for main use-case
\odot	QUIC will continue to evolve, and this may benefit satellite broadband users
	Operators no longer control trade-offs - most changes need updates to clients/servers

What next?

The QUIC WG is exploring new proposals and extensions

Features helpful for satellite could be discussed/developed/deployed

There might be synergy here with mobile use-cases....

.... What issues are most important?

.... How do we move forward?